More questions answered about Antarctic research life

What’s the SNOW like? Is it dry? Are the layers well bonded?    Marielle

The short answer is that I haven’t seen much snow (until now!).

Most of the side of the island McMurdo Station is on was pretty snow-free by the time I arrived, whether from wind or sublimation or both, I don’t know. (Definitely in town there was some evidence of plowing, but even the slopes above were pretty bare.) I was pretty busy in town getting logistics set up, so I didn’t do any of the hikes to snowier parts of the islands yet.

Then I flew out to the Dry Valleys – so-called because they are not covered in ice sheets. They do get snow in the winter, but much had already melted and evaporated or just sublimated by the time I arrived. I did have to shovel out a site for my tent, but it was only a few inches deep and too crusty to see multiple layers in it. (So I guess they were well bonded?)

But then on November 18, it started snowing in camp! It continued the next day, leaving a white dusting over the rocks in the valley! No real layers there to bond, though.

The snow pretty much all sublimated within a couple days, as this is one of the driest places on earth. But as I write this, it’s snowing again! It feels cozy in the cook hut, and magical out by the helicopter pad and tents.


How do the showers work? Can you do laundry?       -My mom, after I mentioned showering

Not at the field camp, we can’t do laundry. Our only source of water is melting chunks of ice from the glacier (glacier berries!), which will get harder to collect once the lake ice starts to melt, so we try to conserve water. Here we are stacking glacier berries in a sled to pull back across the frozen lake to camp:

We do get to shower once a week, which is more than I was expecting. I thought I’d go up to four weeks without a single shower or washing my clothes. For showers, we boil water and pour it into a sun shower bag.


How do you survive -22 degrees in a tent?       –Kristine

A warm sleeping bag, a liner inside that, hot water bottles, and lots of clothing in my case. Some folks here say they are already sleeping with their bags open and stripping down to t-shirts to sleep. Not me! Maybe because my tent is more in the shade of the glacier (worth it for the view in my opinion) and is colder, or because I spent six years doing field work in hot Tucson, I bundle up at night. I am typically wearing 2-3 times as much clothing as everyone else at any given time, though, so it’s probably the Tucson thing.



Are you making friends?        -Hilary

When I first started talking about doing research in Antarctica years ago now, my mom told me I had better watch Werner Herzog’s Encounters at the End of the World. She warned me it looked like this place was full of weird, old bearded men. After watching that documentary and agreeing with her assessment, I still only wanted to do Antarctic research even more.

Not that I have anything against weird old bearded men, but the the US Antarctic Program is somewhat more diverse than that. It is true that there is a majority of men overall, and white men at that. (And a lot of them do indeed have beards.) There are plenty of younger adults working all kinds of jobs, and all ages and genders I have met have been adventurous and outdoorsy, fun kinds of people.

The people are one of the best parts of working down here. There are funny characters. Most people working here are very kind, competent, and fun. One things we noticed at McMurdo was that although there was a bit of bureaucracy about who we had to see about what, the competence and helpfulness of the people in the jobs made it seem easy.

In the field camp at the moment, we actually are majority women. Although we work a lot, both in the field and on data analysis and other computer-based tasks, we are also living out here, and have to unwind occasionally. Some evenings we can go on fun hikes, or take silly pictures, or watch TV shows on the hard drives together.


Want to know more about what I’m doing down here?

Check out our team’s blog:

FAQ about research in Antarctica



I had about a billion questions about what Antarctica would be like before I arrived, and many others once I got here. Folks back home have been asking me questions by email since I’ve been here, too.

Here are answers to some things I always wondered, and some others I never thought to ask – send me your questions! What do you want to know?

The view from our lab window.

What does it look like? Just how cold is it? You can see a webcam image (and current temperature!) of McMurdo Station here. The webcam doesn’t do the view across the ice shelf justice, though.

Does the light ever change? It’s summer here, which means the sun never sets. It does move around in the sky, though, and shadows get long after dinner. I stayed up past midnight once, and the sun dipped near enough to the horizon to get that “alpine glow” on the far-off glaciers and the “golden hour” lighting like an hour before sunset.

Am I camping or what? Right now I’m stationed at McMurdo, which has indoor laboratory, dining, and dorm buildings. If you’re picturing small college dorm rooms with multiple people per room and a bathroom down the hall, you’re right on. Thursday I will fly about 45 minutes by helicopter to a field camp, where I will be living in a tent for the rest of November.

GOPR0025.jpgHow is the food? Am I doing okay? (Yeah, that was my mom who asked.) The food is good. It’s a dining hall (“galley”). There are indeed vegetables and fruit. That said, everyone being inside a lot and eating out of the same galley, viruses go around like wildfire. I’ve been here less than a week and am already sick, despite using the handwashing stations outside the galley and the hand sanitizer on the tables religiously.

What the heck do I do all day here? So far, I have had days of briefings and meetings on safety and field logistics, things like how to safely approach a helicopter on a glacier and which directions storms come from at McMurdo. I have also been chasing down and checking over all the equipment for the field work and the lab work that we will need to use over the next three months, then organizing and repacking it. Every day has been different and new and exciting. And it will only get more different and new and exciting once we get to the field.


What am I doing here anyway? Studying microbial communities in cryoconite holes (which I liken to natural test-tube experiments)! You can see my previous post and also follow our research team’s blog for more details.

On my way to Antarctica

The last thing on my to-do list last week: fly to Antarctica. It wasn’t a metaphor or a joke.

I was slightly concerned the evening before that not all my gear would fit in my bags, but it did!
I was slightly concerned the evening before that not all my gear would fit in my bags, but it did!

Actually, I was only going to leave for Antarctica Friday. It will take me three to four days  to get there (via New Zealand), so I won’t arrive “on the ice,” as they say, until Monday night Colorado time. I’m posting this from Christchurch, NZ, where I’m spending the day being issued cold weather gear from the US Antarctic Program (that classic red parka in all the pictures).

It’s still a little surreal that I’m really going. As a kid, I dreamed of running the Iditerod. I read all the books about the great race that I could find. But with climate change melting the course more and more every year, that started to look unlikely. About ten years ago, fresh out of college, I started applying to research technician jobs I saw advertised in Antarctica. I figured it was a long shot, though: if they didn’t already have someone in mind, there were probably hundreds (at least) of applications and even if I were qualified, it would be practically a lottery.

I fell in love with a hot desert instead for a time. I was thrilled that Peter Chesson agreed to advise my doctoral work, and I learned a tremendous amount in his lab and appreciated his support (and still do!). But at some point while counting seedlings in full sun at 115 degrees Fahrenheit, with the dark rocks burning through the soles of my shoes, I started to daydream about Antarctica again.

It was around then that Diana Nemergut first told me about cryoconite holes, ice-bound natural microcosm experiments in the glaciers of Antarctica. Her excitement was contagious, and I was interested in her research. When she offered me a position as a postdoc, I was was both honored and humbled, wondering if I could really contribute what she thought I would bring to the project.

Diana passed away at the end of last year. There’s not an easy way to say that. I barely knew her, especially compared to her long-time colleagues and her family, yet she was such an inspiring example of a scientist and a person and made such an impression on me in the short time I had to interact with her that even I miss her. She is certainly in my thoughts as I head to Antarctica, as she is often in the thoughts of her many friends.

I am also grateful to her collaborator Steve Schmidt for taking on the responsibility for the project and for adopting me and welcoming me into his lab. Some of you reading this may remember me talking last year about moving to North Carolina to work with Diana, and been confused when I instead wound up in Boulder. 2016 has so far been full of highs and lows, but above all it has been a year of many unexpected transitions and growth personally, geographically, and research-wise.

Despite the massive amounts of planning that have already gone into this upcoming field season (seriously, this is the best-planned field study I have EVER embarked on – and it could still change anyway due to field conditions), I am sure the rest of 2016 has the potential to set new high bars for unexpectedness and growth even in this year of transitions.

Can you see the simultaneous excitement and exhaustion in my face? Behind me are the iconic tree ferns of New Zealand in Christchurch's botanic gardens. Listening to birdsong and being bathed in green light and bright blooming flowers helped me reset after about 30 hours of travel in buses and airplanes.
Can you see the simultaneous excitement and exhaustion in my face? Behind me are the iconic tree ferns of New Zealand in Christchurch’s botanic gardens. Listening to birdsong and being bathed in green light and bright blooming flowers helped me reset after about 30 hours of travel in buses and airplanes.

I’ll try to update this site regularly despite the limited bandwidth at McMurdo, and you can also follow progress from our team blog (, YouTube channel, and follow us on Twitter (@cryoholes).

It’s a bird! It’s a plant! It’s a…. Paramecium?

How would you describe the life cycle of a single-celled animal compared to the life cycle of a bird? Or compared to your life cycle, for that matter?

Paramecium multinucleatum, a single-celled animal
Paramecium multinucleatum, a single-celled animal

Birds, like humans, are made up of many, many cells (and about as many microbes as human cells, too!), and take years to grow large enough to find a mate and reproduce. You probably can think of a few ways a single-celled animal differs right away: many do not need a mate, but can just divide in two. It only takes a few hours to a few days for them to grow large enough to divide.

A bdelloid rotifer, about the same size as the Paramecium above, also does not need a mate even though it is multicellular.

But many single-celled animals differ in another important way. If our environment gets too cold or we cannot find enough food or water, those conditions can kill us. Many single-celled animals, however, can retreat into a hard-walled structure, forming a cyst that can survive a long time without eating, and even survive freezing or drying out. This is one strategy that seeming super-organisms might use to live on Antarctic glaciers or in the Arizona desert, for example.Bleph_20160504f

The pink animal in the top photo is in the genus Blepharisma, and is a similar size to the Paramecium. When Blepharisma are in trouble, they form the small pinkish cysts in the lower photo.


This ability to survive as cysts might be important for understanding which species are where. Such  animals are in some ways more like a plant, with a seed bank in the soil waiting for rain, than like a bird. In fact, this superpower is one that other microscopic but multicellular animals, like rotifers, also possess.

The structure on the left is a cyst-like structure of the rotifer (genus Philodina) pictured above. (The one on the right is another sort of rotifer, in genus Monostyla.)
The structure on the left is a cyst-like structure of the rotifer (genus Philodina) pictured above. (The one on the right is another sort of rotifer, in genus Monostyla.)

Maybe time for a new superhero in the Marvel universe? One with the power to transform into an impervious little sphere at the first sign of trouble? Cystgirl? Cystman?

Who lives in cryoconite holes?

Not hobbits, that’s for sure. In fact, a cryoconite hole is about as far from a hobbit hole as you can imagine.

Hobbit hole Cryoconite hole
Found in Middle Earth Found at the ends of the earth
Not nasty, dirty, or wet Definitely nasty, dirty, and wet
Comfortable Cold
Full pantry Very low nutrient environment
Round front door with brass knob Round ice lid that sometimes melts
Residents typically do not travel Residents rely on travelling


A cryoconite hole is a small pothole that forms in a glacier when some dark dust (“cryoconite”) absorbs the sun’s energy and melts the ice around it. You can see a diagram of this process here and photos of these holes here.

Some extreme organisms live in these cryoconite holes. They include bacteria, fungi, and microscopic ciliated protists, bdelloid rotifers, and the famous tardigrades (“water bears”). In order to thrive in the only occasionally hospitable puddles, these organisms must all regularly tolerate freezing, drying out, and being blown around to new holes. The cryoconite holes in Antarctica in particular are interesting ecosystems, as they will often keep a frozen ice lid even while melting out in the middle, isolating it from the atmosphere. What if they use up all their oxygen? Or all their carbon dioxide?

A few papers have been published on the residents of these cryoconite holes. A perhaps surprising amount of diversity exist in these holes for their extreme nature. I must have a little Took in me, because I am excited to travel to Antarctica myself to find out how this diversity of organisms persists. In the meantime, I am fortunate to have collaborators interested in finding out exactly who is living in samples they have brought back from previous work there.

Status update

I’m parroting this week’s episode of This American Life in my post’s title because it applies so aptly right now. My “About Me” section begins with this disclaimer:

“Warning! I am NOT an expert (yet)!”

I initially wrote it to point out that I was still a student, still learning my way around the desert, how to do research, and a lot of other things, frankly. Over the past six and a half years, I have learned a lot. I have spent a lot of time thinking about my research questions and how to answer them. I have some answers and some estimates of how confident I am in them. I am a little bit of an expert on some of these questions and organisms by now.

Next week I face a milestone marking how much I have learned. On Thursday, I am scheduled to defend my dissertation in a public presentation, followed by a closed-door oral exam by my committee:

The official College of Science flyer for my public talk.
The official College of Science flyer for my public talk.

This is the final major ritual in earning a Ph.D. for most programs (besides making revisions to your dissertation suggested by the committee and filing the paperwork) to confer a status of “Doctor.” Preparing for it is a lot of work, but has been a great opportunity to look up from the details of the analyses to reconnect with the big questions I am trying to answer.

A brief guide to the dissertation defense: Instead of an “oral exam,” this requirement is commonly referred to as just a “defense,” leading some friends to ask me what crime I have been charged with. The defense is one of the few features of a doctoral program common across fields and universities, leading to parodies (I hope) like this FAQ On the Snake Fight Portion and to comics like this one:

After marking this milestone, I may feel compelled to admit to being a bit of an expert, at least on predator avoidance behavior, dancing mice, and invasive buffel grass. But this blog will continue to be a place for me to post un-reviewed, anecdotal stories. And one thing is certain: regardless of any status update, I plan to  keep on learning.

The importance of maintaining perspective

When was the last time you were so disoriented – if just for a moment – that it made you question the fundamental nature of space-time? The first time I experienced that was my first week of junior high, before I understood that the building (which was considerably larger than the elementary school I had attended) had two different sets of stairs. For the first day and a half, I struggled to understand why sometimes I arrived immediately at my new locker and between other classes I wandered through three hallways before finding it.

Arguably I have come a long way from that navigationally challenged twelve-year-old. I know how to use a topo map and a compass, and have even on occasion been entrusted with groups of small children out in the mountains. I think the fact that I keep bringing them back speaks well of my ability to get my bearings (eventually). And last August, I was ready to test those skills in one of the most challenging navigational situations on Earth: the Amazon rainforest.

For more on what I was doing in the Brazilian Amazon, you can skip to the section below, but to briefly set the scene, I had been there for about two weeks, and I was on my way to one specific individual tree about 600 meters (0.6 km) into the forest. I was not carrying a compass. Two intersecting trails could get me within 30 meters (90 feet) of the tree before I had to set off into the undergrowth on my own. The first trail, T2, is a straight line from the research base extending out for a full kilometer. Halfway down T2, it is intersected at a right angle by T4, another kilometer-long straight line. The route to the tree in question involved turning left onto T4, then after nearly 100 meters, striking off to the right into the forest:

Diagram of the tree's location (not to scale). Dotted line shows my planned route.
Diagram of the tree’s location (not to scale). Dotted line shows my planned route.

I would find the point of departure from the trail using the PVC pipes marked with distance every 25 meters. I also had hiked to this tree several times in the last two days, so I had a vague memory of the lianas and fallen branches that marked the point.

Turn right after
Turn right after “that one liana with the fallen branches.” Right, that one. Note: this is a photo of a well-beaten path at the site.

Walking 30 meters from the trail would be straightforward in the desert or mountains, unless there were a cliff or an enormous cactus garden in the way. But in a dense forest like the Amazon, you can neither see your target nor where you came from. There are understory plants, lianas, fallen logs, and other hazards to throw you off course. Since I knew we had thrashed a bit of a break in the undergrowth over the past two days, and I also knew where to start from off the trail, I would just walk in a straight line from there to the tree, following those gaps.

Walking with a large backpack through this is a little complicated.

However, another grad student who would be joining me shortly to climb the tree had only been to that particular tree once. He probably did not remember the exact place to leave the trail for easiest travel. So I scuffed a little mark on the ground with my toe. We would be within shouting distance, and I could tell him to look for that mark.

I mean, how could you miss that?
I mean, how could you miss that?

This time out, I was wearing a heavy backpack, full of climbing rope and rigging slings. I moved more awkwardly between the leaves, seeking larger gaps and snagging on thorns. I wasn’t sure I was following the same route I had before, but kept finding my way through gaps out toward the tree. I thought I recognized a downed log and went around it. I started to wonder if I had passed the right tree by then. Then suddenly, I stepped out onto a straight and well-beaten path where none should have been. I was stunned. Had I walked far enough and at enough of an angle to have arrived farther down T2? I looked left and right to see where the nearest meter marker might be. Then I looked down.

Had I missed the tree and walked all the way to the next path? Dotted line shows where I thought I had gone.
Had I missed the tree and walked all the way to the next path? Dotted line shows where I thought I had gone.

I was standing exactly on the scuff I had made before leaving T4. Somehow, without ever realizing it, I had walked a neat little circle, no more than 30 meters in diameter, and arrived exactly where I had started while thinking I was walking in an approximately straight line. I had heard of people walking in circles in forests, but pictured it happening to completely inexperienced hikers, maybe over the course of a few miles. Not to me, and not in so small a space.

Dotted line shows where I had actually walked: in a neat little circle.
Dotted line shows where I had actually walked: in a neat little circle.

Not long before I set out, another grad student there, Ty Taylor, had been talking about his strategy for navigating in the dense forest: get a sense for where the sun is, and walk straight relative to that. In other words, keep your head up, your focus on a higher objective, and avoid the trail-blindness trap of blundering into each next easiest vegetation gap.

Best case scenario during the dry season: the sun is visible at least some of the time.
Best case scenario during the dry season: the sun is visible at least some of the time.

The sun had been dodging to and fro behind clouds that afternoon, but, once my head stopped swimming, I turned around and got a good look at the angle of the shadows. I started walking toward my target tree, following the shadows, and not minding so much the snagging on vegetation. This time I walked straight to it.

I have kept thinking back to moment in the two months since, as I finish writing my dissertation. I like it for a number of reasons. Foremost was the profound wonder at understanding I had walked in a circle, laughing at the magic trick the forest had played on me, but also fairly awed at how completely I had been taken in. And of course there is also the physicality of the obvious metaphor: marching on with the heavy pack and trying again, where I had failed the first time – but this time maintaining perspective, context, and direction. Heading where I wanted to go, rather than focusing on finding the easy path that had been walked before.

For the curious: Why was I stalking a tree in the Amazon rainforest?

Last August, I spent several weeks helping with the Saleska lab’s research as part of an international collaboration in the Brazilian Amazon. The overall effort is broadly focused on predicting whether the largest carbon sink in the world will be able to absorb excess CO2 from the atmosphere, mitigating climate change, or whether it will die off and spew the carbon from decomposing wood into the air, which would accelerate climate change. One important piece of predicting whether a forest will die back or thrive under the potentially hotter and drier conditions is to know whether leaves can continue photosynthesizing. By measuring the water released by a leaf or the carbon dioxide taken up by a leaf, researchers can calculate their activity. But here’s the challenge (well, one of many challenges of doing research in the Amazon, really): conditions on the forest floor are pretty different than in the canopy. Sounds obvious, but it becomes important when you try to measure sensitive leaf behavior. So you have to get into the canopy.

Conditions are different in the canopy. But how to get out to those leaves on the edges?
Conditions are different in the canopy. But how to get out to those leaves on the edges?

Getting to the canopy means climbing up a tree anywhere from 20-50 meters. That’s about 60-150 feet! Rope systems are a must – if only because smooth, bare tree trunks are difficult to climb themselves, to say nothing of the risk of falling.

Looking down the rope I'm ascending into the forest below.
Looking down the rope I’m ascending into the forest below.

But if you are securing yourself to strong forks in the trunk, how do you safely work your way to the edge leaves that get the sun? Branches get thinner, and you are farther from your anchor point, meaning a longer fall and a nasty swing toward the trunk.

The expert Mick secured to sturdy forks nearly 50 meters off the ground.
The expert Mick secured to sturdy forks nearly 50 meters off the ground.

Professional arborists and experienced researchers can set up rope systems between multiple trees in a Tyrolean traverse to work their way out to a canopy in the middle, suspended by the ropes from other trees. But that is physically difficult, and can take several days to set up to sample a single canopy. Besides, where do you set your sensitive leaf-measuring equipment then while dangling there?

Solution: invest the time and expense to build platform walkways between some trees. And that is what they are doing, and what I helped with.

Me excited to be climbing a big tree on a rope system.
Me excited to be climbing a big tree on a rope system.

But once you spend the time and expense to build a small number of platforms, you want to make sure each one is really worth it – that it is safely built on large and healthy trees, with no big dead trees looming over it and ready to fall, and with multiple canopies of interesting species along the walkway.

Neill Prohaska with steel cables installed, in the process of adding metal platforms. Photo credit Ty Taylor.
Neill Prohaska with steel cables installed, in the process of adding metal platforms. Photo credit Ty Taylor.

It turns out these criteria are remarkably difficult to satisfy. After spending a day and a half searching about 25 meters to each side of an entire kilometer-long transect, I, along with an English arborist and a local forester had located only two potential sites. Part of the survey process involved sending the arborist up at least one tree in question to have a better look, which is why I had walked back and forth from the well-traveled T4 path to my target tree several times in two days.

What is “lightning position,” anyway?

This was the worst kind of exam: where your life might depend on remembering the material. Since I was lucky, I checked my answers against credible sources afterwards.

Here’s what happened:

About ten days ago, I was out at the site of one of my field studies for my dissertation research. This particular site was in Saguaro National Park West, the Tucson Mountains. It was a grass-covered hillside about two miles from the road. I have logged literally hundreds of hours at that site during monsoon season in 2012 and 2013. I have weathered storms there and on other mountains. I knew thunderstorms were possible that Thursday, as they often are during monsoon season, and I thought, “Great! If it’s overcast, it won’t be so hot.”

Something I did right: The Park rangers knew the location of my fieldwork for the day, and my housemate knew to expect me home by 5pm. ALWAYS tell someone where you are going and when you should return. I could have been more organized about leaving a map and the phone number of the rangers for my housemate.

A good place to see storms coming from, but not a good place to wait for them.
A good place to see storms coming, but not a good place to wait for them to hit.

I was out there removing nails and string that had marked my old study plots, now that the data was collected and the paper written. I had only a few more to go when I straightened up to look out at the view (it is a pretty beautiful site), and noticed the thunderstorm was, in fact, headed my way. Wind patterns can be unpredictable, and I have seen storms pass by miles away many times, so I waited until I saw lightning on the next set of hills, about 6-10 miles away, before realizing I might really get wet. Fortunately, I had only three more plots to go, so I hurried to jam the last of the materials in my backpack, then turned towards my car.

Something I did wrong: I should have just left much sooner. It turns out you are so much safer in a car or modern building (not a bicycle or tent) that that option trumps anything you can do to minimize your chances of being hurt if caught out in the open.

Two roads diverged in a saguaro wood and I... I took the one less survived by. I'm glad it made no difference.
Two roads diverged in a saguaro wood and I… I took the one less survived by. I’m glad it made no difference.

The first raindrops fell as I reached the bottom of the hill. My phone was already in a waterproof case, but I had forgotten a larger waterproof bag for my camera, so I wrapped it inside my hat, stuffed that inside my backpack, and hiked faster. The thunder was rumbling closer, and I was glad I had only flat desert and washes in the 1.75 miles left between me and my car.

Then the first ground strike hit between me and my car. I can only describe the shocked feeling I had as having been cheated or betrayed by the desert. I was supposed to be safe once I was off that hill! What was the lightning doing, hitting the low desert? Counting the seconds (“one-one-thousand, two-one-thousand…”), I guessed it was about a mile and a half away. The storm was sweeping toward me from my shelter, and I had nowhere to run.

I stopped and crouched down, then checked my watch, thinking that if no more lightning hit for fifteen minutes, I would keep moving in that direction.

Something I did right: It might be that crouching down doesn’t do much to minimize your chances of being hit. I was in the middle of a forest of 20 foot tall saguaro cactus – me going from five feet tall to three feet tall was unlikely to do much good. But it doesn’t hurt, especially as even shrubs in the desert can be hit, as long as you minimize your contact with the ground, and keep your feet together. Read on for why those are important.

Another ground strike burned a bright connection between clouds and the green haze of the rainy saguaro forest in front of me. I counted until I heard the thunder. This one was a little closer. I checked my watch. Barely a minute had passed since the first ground strike.

I thought about all the nails in my backpack. I couldn’t remember if having metal on me would make me a more likely ground leader. I took the backpack off and moved about twenty feet away, still crouching.

Something I did kind of wrong, but kind of okay: The sources I looked at said having metal hiking poles or electronics will not make a big enough difference in conductivity to make you an attractive ground leader. If you have a backpack that is full of something other than metal nails, it even makes a good insulator between you and the ground in the event of ground current. Up to half of lightning fatalities are caused by ground current – electricity spreading through the ground up to 50 or 60 feet away from the strike. The more insulation between you and the ground, the better. Sit on top of a backpack or crouch sleeping pad if you have one. I say I did it kind of okay because I took it off for the wrong reason, and didn’t think to empty out the nails and get on top of it, but I was more comfortable without the weight on my shoulders, and there wasn’t much in there to really insulate me.

I started going through a checklist of everything I could remember from outdoors leadership trainings on lightning safety. I still felt terribly exposed on the open, flat ground between the low shrubs and saguaros. Shallow washes ran parallel to me, the nearest one about 100 feet away. I ran to it, and down the bank. I crouched on the side of the wash, not down in the bottom where water could pool and run, but still lower than the flat ground surrounding the wash. I made sure I was at least 30 feet from all the saguaros and other tall plants.

Something I did right: Getting into depressions or washes is better than being on flat ground. NOAA says that probably does more to decrease your chances of being hit or taking ground current than just crouching down. However, water conducts electricity very well. Current could spread much further through water than solid ground, so make sure to stay out of any water in the wash. Also avoid holding on to wet ropes, metal railings and fences, and other long conductors.

Something else I did right: You probably know not to stand next to a tall tree (or cactus) in a lightning storm, because the current could arc out sideways (called side flash) and through you. There is less good data on how far away that arc could travel even than on how far ground current travels, but 30 feet away is probably safe. Stay crouched in a small ball away from tall trees to decrease your chances of side flash.

Ground strikes continued to hit the flat ground within two miles of me every one to three minutes for the next twenty minutes. I kept good track of that time, even though I stopped counting the strikes. Some were simultaneous sound and light, so I guess less than a quarter mile away. Some were long; the bolt burned white for what seemed like nearly a full second. I remember being surprised my ears were not ringing from those, but probably I wouldn’t have noticed them ringing over the constant grumbles overhead and the racket of the pouring rain on desert stone.

This is the kind of terrain I was in. Even though those hills look like they should draw lightning, the saguaros on the flat ground also do, it turns out.
This is the flat desert between the hillside and me. I was closer to those hills when the lightning was striking around me. Bolts were hitting near where this photo had just been taken just hours before.

Have you ever tried to hold a crouch on your toes for twenty minutes straight? It’s really hard on your leg muscles. Mine were burning. I tried to shift positions, but I thought I remembered something about it being safer to have your feet or ankles touching, which limited the number of positions I could really get into.

Something I did right: Here is where I really suggest checking out the NOAA guide for their silly farmer and cow diagrams. Remember how I said up to half of lightning fatalities are caused by ground current? If your feet are together, the difference in voltage between your feet – leading current up through your body – is negligible. If your feet are apart, that difference in voltage can be fatal. This may have been one of the actions I took that improved my chances the most.

And after twenty minutes, the ground strikes retreated to the ridges. And ten minutes later (thirty minutes after the first ground strike between my car and me), I checked my watch, as I continued to do with every strike, and another one never hit. During the fifteen minutes I decided to wait until moving from my wash, from an abundance of caution, the rain stopped, then the rumbling overhead, then the sun came out. By the time fifteen minutes was up and I was walking, blue sky was visible overhead. I was shivering, but not cold enough that I had ever really worried about the hypothermia being more dangerous than the lightning.

I looked around for saguaros that looked like they had been hit during the storm, but you have to remember that I was in Saguaro National Park. There were at least hundreds of saguaros within two miles of me. This is the only one I found that might have been a hit, but I have no way of knowing whether it was during that storm or a previous one:

Was this a lightning strike?
Was this a lightning strike?
A closer view
A closer view

In the end, I probably just survived through luck, because no bolts hit close enough for ground current to affect me. But I minimized my chances of getting hurt should one strike close by getting down in a wash, away from tall saguaro, and squatting in a tight ball with my feet touching. If I had continued to run for my car, my path would have taken me near tall saguaros and eventually fences, with my feet apart as I ran. I guess, given that I had made the mistake of staying out too long in the first place, I made the right choice in getting down rather than continuing to move.

Summary: If you are outside and see or hear lightning coming….

If you can reach a car or modern building, go. If you are leading a hike, fieldwork, or some other trip, be vigilant and ready to turn back early if you hear thunder. Don’t get into a situation where you are playing your chances with lightning.

In the event that you are inevitably trapped an hour or more from your shelter, find a wash or depression. If you have a group, spread people out 20 feet apart so that not everyone gets hurt from the same event, and someone is still available to help evacuate, perform CPR, and call for help if a group member is injured. Stay 30 feet away from tall objects, and stay out of water. Get into “lightning position”: Squat down in a ball, keeping your feet together, on a backpack or sleeping pad. Do NOT lie down or otherwise increase your contact with the ground.

Wait ten minutes after the last strike with a ten second count between strike and thunder (about two miles) before moving out of your position.

Check out the resources from the NOLS pamphlet and blog and from NOAA for more detailed data and recommendations.

Yes, young scientist, your field experiment IS doomed.

Does it ever seem like the universe is has something against your field experiment? That’s not your imagination. Nature is definitely trying to undermine you.

Whether you’re in middle school searching for a science fair project, 84 years young and trying to determine what sort of animal is eating your garden, or a struggling PhD student hoping to make a career out of field research, I hate to tell you this, but your experiment isn’t going to work the way you thought it would. Instead, you’re going to learn so much more. Or you won’t, either way. So try to enjoy it.

I stole this from IFLS because it captures the nature of field research so perfectly.
I stole this from IFLS because it captures the nature of field research so perfectly.

My friend Ben Blonder learned a little about precipitation instead of plants when he arrived high in the Rocky Mountains of Colorado to set up a long term field experiment earlier this summer, and found the entire site was still under several feet of snow. You can read about his subsequent adventures that he detailed on his blog.

I also learned a little about precipitation after one of my fluorescent-tracking experiments was destroyed by a monsoon rainstorm.
I also learned a little about precipitation after one of my fluorescent-tracking experiments was destroyed by a monsoon rainstorm.

These are the steps that are usually left out of how the scientific method is taught in school. You thought there was only: 1. Make observations, 2. Form a question, 3. Define a hypothesis, 4. Design methods, 5. Collect and analyze data, 6. Draw conclusions, and 7. Communicate your results.

What they don’t tell you is that in between the steps of collecting and analyzing data, you have to insert: 4a. Realize your methods don’t work the way you expected, 4b. Redesign methods, 4c. Collect more data the new way, 4d. Repeat an unknown number of times.

I like to think that with more experience, those steps might drop out of the method. But I have a sneaking suspicion that instead, you simply become resigned to their presence and learn to expect them.

I have been learning a little about expecting the unexpected from some nocturnal research this summer. I have been trying all summer to get data from a field experiment on where pocket mice cache seeds (see my previous posts about this effort for details). I had designed an elaborate procedure to glean information about their movements from every spec of fluorescent powder they tracked away from my fluorescent dust covered experimental seed depots, combining that with video data to identify the animals. But then I realized two things:

  1. I could identify the trails and general movement if I just zoomed out, got my nose off the ground, and walked around (their little feet and tails and tummies track it around widely).
  2. This species does not tend to cache seeds outside their burrow as often as I thought they did.

Actually, I realized a third thing, too:

  1. Animals are jerks (they really are) and will do whatever you least expect them to do.

I realized I needed to examine a much larger set of instances of animals taking seeds from experimental depots I provided. I also realized this was possible to survey much faster with less detail, but greater understanding, if I walked around and generally looked at their movements – and that way, I might actually find some of the caches I was really interested in.

But of course my experimental depots were washed away by a large rainstorm in the driest part of the driest mountain range near Tucson. So, with a sinking feeling that I was wasting my time, I spent a few hours re-baited them all, even though it was predicted to rain again. This is monsoon season in the Sonoran Desert, after all. But it was a lovely few hours hiking in the desert, and hey, I probably needed the exercise.

Then, last week, armed with my UV flashlights, I headed out to survey for footsteps and caches.

I still had never found one of their caches. I knew what to look for by reading about them: signs of recent digging, with fluorescent dust in the apron of disturbed soil. I had seen the disturbed soil after recent digging was recorded by my game cameras. And on this rocky, hard-packed desert pavement hillside, recent digging is pretty rare and noticeable.

Fortunately, I brought a friend along who thought a night time hike in the desert with black lights sounded like a great way to see some scorpions, tarantulas, and other wildlife. (Lightning, too, as it turned out.) As we surveyed the second-to-last depot, he pointed at something glowing bright.

Uphill of the depot was a little pile of nine seeds, carefully piled between some pebbles. This was not a random arrangement of some seeds that had been dropped.

The first cache we found
The first cache we found

As we walked back along the rest of the depots, we found several more definite caches, and a few that were definitely non-randomly placed, but didn’t look very well hidden from pilfering neighbors, so I’m not sure what to make of those. But it turns out I wasn’t finding dug caches because these pocket mice don’t try to dig most of them – would you? If all you had was your hands and nails against the caliche and the rocks? Instead, it might be easier to cover them in a little pile with rocks in a crevice, or under a nice dense bunchgrass.

A cache of seeds fluorescing under a UV flashlight where they are hidden in a dense bunch of invasive grass.
A cache of seeds fluorescing under a UV flashlight where they are hidden in a dense bunch of invasive grass.

Just when I was ready to finally give up on this doomed field project, it reeled me back in by spitting out some data. This may be the most emotionally abusive research ever, or, well, just the usual doomed research process.

So with that thought, I provide you, fellow young scientist, with a field guide to handling the fact that your research is totally doomed:

  1. Have fun. If nothing is going to come of this anyway, make sure you got a lovely hike in, or listened to some rad music while collecting your useless data, or otherwise enjoyed the wasted time.
  2. Try to adopt a framework that includes variability in the environment as part of your understanding, rather than pretending it doesn’t exist.
  3. Be flexible, and ready to improvise.
  4. Get your friends involved, whether or not they’re experts in this arena. They have good ideas. Don’t be embarrassed to talk about the project with anyone you can bring it up to – you never know where that key suggestion or offer of equipment will come from.
  5. Don’t give up. Every research project is doomed, until it isn’t anymore. Maybe you can’t collect enough data to be useful in one season, but after 20 seasons, it might be pretty interesting.

The social and ecological footprint of a carne asada taco

What is the ecological footprint of your lunch today? Seriously, think about what you brought with you, or where you went out to today. How much land was required to grow the crops or raise the animals involved? How much water did they require? What additional processes go into that food beyond just growing it, like the oil burned to ship ingredients to you?

Driving in to Hermosillo for a visit last year, the view through my windshield at a traffic light.
Driving in to Hermosillo for a visit last year, the view through my windshield at a traffic light.

If you live in Tucson or in Hermosillo (or really in any city with increasing food cart culture now), your routine might include a visit to the nearest taco cart for some carne asada. And a team of researchers have now calculated the ecological footprint of all the carne asada from taco carts in Hermosillo. Their results will appear in a special issue of the Journal of the Southwest this fall.

Carne asada, as I recently learned from two of the authors, Nemer Narchi of ColMich and Alberto Burquez of UNAM in a presentation about their research, has a more specific cultural history and context than just beef that is grilled. This particularly North Mexican dish is a specific process of grilling beef on mesquite charcoal and is a relatively recent culinary invention dating from Jesuit arrival. Carne asada is typically served on wheat tortillas instead of corn tortillas. The article traces the way cattle and wheat together were major agricultural introductions that settled a traditionally nomadic indigenous dominated north, allowing it to be incorporated into the centralized Mexican state. As mining and cattle culture spread, carne asada served alongside tortillas and salsas was born from family celebrations after butchering cattle to serve miners in mining camps. As the population of Northern Mexico became more urban, unemployed butchers during recession cycles opened mobile restaurants serving snack-sized combinations of these ingredients: the taco carts.

A cow standing in a converted buffel grass pasture. I took this photo while visiting Alberto last year, near one of his study sites outside Hermosillo.
A cow standing in a converted buffel grass pasture. I took this photo while visiting Alberto last year, near one of his study sites outside Hermosillo.

The researchers then calculate the environmental and socioeconomic costs of the industry that has formed to produce the now ingrained culinary traditions. When you eat carne asada from a taco cart in Hermosillo, the cattle were likely raised on the extensive ranches surrounding the city. Throughout the state of Sonora, ranch lands are being converted from native Sonoran Desert thornscrub plants, including native grasses, to bulldozed and planted pastures of a grass introduced from Africa, known as buffel grass (Pennisetum ciliare). Yes, this is the grass that I have been studying for a good part of my dissertation research. It has a large effect on the native plant species. Between the bulldozing, the buffel grass planting, the water required, and the potential erosion and other effects of overgrazing, cattle ranching in Sonora to produce the legendary carne asada can have a heavy footprint, as well as a large one.

And then you must consider the wheat grown to produce the tortillas. And the native mesquite trees cut, frequently from ecologically fragile riparian areas, to produce the mesquite charcoal used to grill the beef. So what is the final footprint? You’ll have to check out their article this fall or some recent press coverage for more details.

A heavily grazed area that is not planted with buffel grass.
A heavily grazed area that is not planted with buffel grass.

But almost more importantly, this research focuses on the footprint of everyday objects, and provides a model for how to start researching that. You can plug your life statistics into online calculators to find out your overall ecological footprint, but it feels a little more abstract than knowing what this one taco required some specific amount of acreage and, increasingly importantly, some specific amount of water. They also examine why that footprint is what it is, what social and economic choices and policies and trends shaped that footprint.

What are the footprints of the small pleasures and cultural anchors of your daily life? What would be your taco cart if you were to follow the lead of Nemer, Alberto, and their coauthors, to find out what something you consume regularly costs ecologically and why it is made that way?

A neat view out my car window as I drove through Hermosillo last year.
A neat view out my car window as I drove through Hermosillo last year.